Biased expression of T cell receptor genes characterizes activated T cells in multiple sclerosis cerebrospinal fluid

Author(s):  
K. Usuku ◽  
N. Joshi ◽  
C.J. Hatem ◽  
M.A. Wong ◽  
M.C. Stein ◽  
...  
1987 ◽  
Vol 15 (3) ◽  
pp. 243-249 ◽  
Author(s):  
Francien T.M. Rotteveel ◽  
Ingrid Kokkelink ◽  
Harm K. van Walbeek ◽  
Chris H. Polman ◽  
Jacques J.M. van Dongen ◽  
...  

1991 ◽  
Vol 35 ◽  
pp. 32
Author(s):  
Martina A. Sherrit ◽  
Jorge Oksenberg ◽  
Nicole Kerlero de Rosbo ◽  
Laurence Steinman ◽  
Claude C.A. Bernard

2000 ◽  
Vol 149 (1) ◽  
pp. 181-194 ◽  
Author(s):  
Matthias Krause ◽  
Antonio S. Sechi ◽  
Marlies Konradt ◽  
David Monner ◽  
Frank B. Gertler ◽  
...  

T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76–associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3–coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.


2004 ◽  
Vol 279 (50) ◽  
pp. 52762-52771 ◽  
Author(s):  
Xikui K. Liu ◽  
Xin Lin ◽  
Sarah L. Gaffen

The biological activities of the inflammatory cytokine interleukin (IL)-17 have been widely studied. However, comparatively little is known about how IL-17 expression is controlled. Here, we examined the basis for transcriptional regulation of the human IL-17 gene. IL-17 secretion was induced in peripheral blood mononuclear cells following anti-CD3 cross-linking to activate the T cell receptor (TCR), and costimulatory signaling through CD28 strongly enhanced CD3-induced IL-17 production. To definecis-acting elements important for IL-17 gene regulation, we cloned 1.25 kb of genomic sequence upstream of the transcriptional start site. This putative promoter was active in Jurkat T cells following CD3 and CD28 cross-linking, and its activity was inhibited by cyclosporin A and MAPK inhibitors. The promoter was also active in Hut102 T cells, which we have shown to secrete IL-17 constitutively. Overexpression of nuclear factor of activated T cells (NFAT) or Ras enhanced IL-17 promoter activity, and studies in Jurkat lines deficient in specific TCR signaling pathways provided supporting evidence for a role for NFAT. To delineate the IL-17 minimal promoter, we created a series of 5′ truncations and identified a region between -232 and -159 that was sufficient for inducible promoter activity. Interestingly, two NFAT sites were located within this region, which bound to NFATc1 and NFATc2 in nuclear extracts from Hut102 and Jurkat cells. Moreover, mutations of these sites dramatically reduced both specific DNA binding and reporter gene activity, and chromatin immunoprecipitation assays showed occupancy of NFAT at this regionin vivo. Together, these data show that NFAT is the crucial sensor of TCR signaling in the IL-17 promoter.


2009 ◽  
Vol 131 ◽  
pp. S160 ◽  
Author(s):  
Andrew Snow ◽  
Rebecca Marsh ◽  
Scott Krummey ◽  
Philip Roehrs ◽  
Kejian Zhang ◽  
...  

2005 ◽  
Vol 25 (22) ◽  
pp. 9741-9752 ◽  
Author(s):  
Zheng Wu ◽  
Hyoung-Pyo Kim ◽  
Hai-Hui Xue ◽  
Hong Liu ◽  
Keji Zhao ◽  
...  

ABSTRACT Interleukin-21 (IL-21) plays important roles in regulating the immune response. IL-21 receptor (IL-21R) mRNA is expressed at a low level in human resting T cells but is rapidly induced by mitogenic stimulation. We now investigate the basis for IL21R gene regulation in T cells. We found that the −80 to −20 region critically regulates IL-21R promoter activity and corresponds to a major DNase I-hypersensitive site. Electrophoretic mobility shift assays, DNA affinity chromatography followed by mass spectrometry, and chromatin immunoprecipitation assays revealed that Sp1 binds to this region in vitro and in vivo. Moreover, mutation of the Sp1 motif markedly reduced IL-21R promoter activity, and Sp1 small interfering RNAs effectively diminished IL-21R expression in activated T cells. Interestingly, upon T-cell receptor (TCR) stimulation, T cells increased IL-21R expression and Sp1 protein levels while decreasing Sp1 phosphorylation. Moreover, phosphatase inhibitors that increased phosphorylation of Sp1 diminished IL-21R transcription. These data indicate that TCR-induced IL-21R expression is driven by TCR-mediated augmentation of Sp1 protein levels and may partly depend on the dephosphorylation of Sp1.


Sign in / Sign up

Export Citation Format

Share Document